Huperzine W, a Novel 14 Carbons Lycopodium Alkaloid from Huperzia serrata

Chang Heng TAN, Xiao Qiang MA, Guo Fu CHEN, Shan Hao JIANG, Da Yuan ZHU \ast

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031

Abstract: Huperzine W, a novel 14 carbons Lycopodium alkaloid, was isolated from the whole plant of *Huperzia serrata*, and its stucture was determined by spectroscopic analysis.

Keyword: Huperzine W, Huperzia serrata, Lycopodium alkaloids.

Lycopodium plants have long been studied and many alkaloids have been reported thus far. Most of the compounds reported have a common formula of $C_{16}N^1$. During the course of chemical investigation on *Huperzia serrata*, we gained huperzine W (1, 25 mg from 10 kg dry whole plant), a novel compound which possessed a unique structure among Lycopodium alkaloids, along with a known compound, alopecuridine (2)². In present paper, we report on the isolation and structural elucidation of 1.

Huperzine W (1), obtained as yellowish oil, showed a positive effect on Dragendorff's reagent and was attributed to the molecular formula $C_{14}H_{21}NO_2$ from HR-EIMS analysis in which the M⁺ appeared at m/z 235.1569 (calculated for $C_{14}H_{21}NO_2$ 235.1572). The ¹³C NMR spectrum (**Table 1**) displayed 14 carbon signals, which were resolved into one methyl, eight methylene, two methine and three quarternary carbons through DEPT experiments. As shown in **Figure 1**, its ¹H-¹H COSY and HMQC spectra indicated the presence of three isolated segments and HMBC spectrum exhibited links among the three segments *via* a lactam group ($\delta_C 138.39$, $\delta_C 145.38$, and $\delta_C 199.65$), respectively. On account of the coupling

constants of the protons of 14-CH₂ (dd, J=15.1, 11.5 and ddd, J=15.1, 3.0, 1.6), we concluded H-15 as axial orientation. Therefore, the structure of huperzine W was decided as **1**.

Table 1 ¹H and ¹³C assignments for compound 1^{a} (δ ppm)

Site	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	Site	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$
1	3.38 t (7.1) 2H	46.99 t	10	1.61 qui (7.4) 2H	26.22 t
2	2.00 qui (7.6) 2H	17.93 t	11	2.15 t (7.6) 2H	26.96 t
3	2.37 t (8.1) 2H	31.12 t	12		138.39 s
4		174.99 s	13		199.65 s
7	6.73 dd (5.6, 2.6)	145.38 d	14α (ax)	2.08 dd (15.1,11.5)	46.65 t
8α (ax)	2.02 ^b ;	34.36 t	β (eq)	2.47 ddd (15.1, 3.0, 1.6)	
β (eq)	2.40 br.d (14.9)		15 (ax)	2.16 m	30.62 d
9	3.25 t (7.2) 2H	42.04 t	16 (eq)	1.03 d (6.3)	21.13 q

a. Solution in CDCl₃, δ values referenced to CHCl₃ residue at δ_H 7.26 and δ_C 77.30, respectively. b. Overlapping signal.

Acknowledgment

This research was supported in part by grants from the National Natural Science Foundation of China (# 39900013 to X. Q. Ma).

References

- 1. W. A. Ayer, Nat. Prod. Rep., 1991, 8, 455.
- 2. W. A. Ayer, B. Altenkirk, Y. Fukazawa, Tetrahedron, 1974, 30, 4213.

Received 16 July, 2001